Einsatz für die Post Quantum Cryptogarphy: Die Verschlüsselung mithilfe physikalischer Gesetze soll die Datenübertragung sicher und Abhörversuche unmöglich machen. Um Daten auch über weite Distanzen übertragen zu können, kommen Satelliten zum Einsatz.
Professor Tobias Vogl, Integrated Quantum Systems bei der TUM, untersucht in einem Versuchsaufbau Einzelphotonenquellen in 2D-Materialien am Institut für Angewandte Physik (IAP), Institute of Applied Physics der Friedrich-Schiller-Universität Jena.
(Bild: Jens Meyer/Universität Jena)
Durch die fortschreitende Entwicklung von Quantencomputern und deren steigenden Rechenleistungen wird es zukünftig möglich sein, unsere aktuellen Verschlüsselungsverfahren zu knacken. Forschende der Technischen Universität München (TUM) entwickeln in einem internationalen Forschungsverbund deshalb Methoden für die Verschlüsselung, die auf physikalischen Gesetzen beruhen und dadurch Abhörversuche unmöglich machen. Um die Kommunikation auch auf weite Distanzen zu garantieren, sollen im Rahmen der „Quick³“-Mission Satelliten zum Einsatz kommen.
Bei der Quick³-Mission handelt es sich um ein internationales Forschungsprojekt, an dem Forschende der Friedrich-Schiller-Universität Jena, der Humboldt-Universität zu Berlin, der Technischen Universität Berlin, dem Ferdinand-Braun-Institut für Höchstfrequenztechnik und des Institute for Photonics and Nanotechnologies in Italien, sowie der National University of Singapore beteiligt sind.
Aktuell werden Daten mathematisch verschlüsselt. Das heißt: Hinter der Verschlüsselung steckt die Idee, dass es schwierig ist, eine große Zahl in ihre Faktoren zu zerlegen. Durch die steigende Rechenleistung von Quantencomputern ist davon auszugehen, dass diese mathematischen Codes zukünftig nicht mehr sicher sein werden.
Verschlüsselung mithilfe physikalischer Gesetze
Tobias Vogl, Professor für Quantum Communication Systems Engineering an der TUM, arbeitet an einem Verschlüsselungsverfahren, das mithilfe der physikalischen Gesetze funktioniert. „Die Sicherheit basiert darauf, dass die Informationen in einzelne Lichtteilchen kopiert und anschließend übertragen werden. Die physikalischen Gesetze erlauben es dabei nicht, diese Informationen unbemerkt zu lesen, zu kopieren oder zu manipulieren.“
Denn sobald die Informationen abgehört werden, verändern die Lichtteilchen ihren Zustand. „Da wir diese Zustandsänderung messen können, wird jeder Abhörversuch, unabhängig von zukünftigen technischen Entwicklungen, sofort erkannt“, sagt Vogl.
Die große Herausforderung bei der so genannten Quantenkryptographie besteht darin, Daten über weite Distanzen zu übertragen. In der klassischen Kommunikation wird Information in viele Lichtteilchen kodiert und über Glasfasern verschickt.
Die Reichweite
Die Information in einem einzelnen Lichtteilchen kann jedoch nicht kopiert werden, weshalb man das Lichtsignal nicht - wie bei der aktuellen Kommunikation über Glasfaserkabel - immer wieder verstärken kann. Dadurch können Informationen nur über einige 100 Kilometer übermittelt werden.
Um Informationen auch in andere Städte oder Kontinente zu übertragen, soll zukünftig der Aufbau der Atmosphäre genutzt werden. Ab einer Höhe von etwa zehn Kilometern ist die Atmosphäre so dünn, dass Licht weder gestreut noch absorbiert wird. Mithilfe von Satelliten ist es so möglich, Quantenkommunikation auch über weite Strecken zu betreiben.
Im Rahmen der so genannten Quick³-Mission entwickelt Tobias Vogl gemeinsam mit seinem Team ein komplettes System mit allen Komponenten, die benötigt werden, um einen Satelliten für die Quantenkommunikation zu bauen. In einem ersten Schritt hat das Team die einzelnen Komponenten des Satelliten individuell getestet.
Im nächsten Schritt wollen sie das gesamte System im Weltraum erproben. Hierbei untersuchen die Forschenden, ob die Technik überhaupt den Bedingungen des Weltraums standhält und wie die einzelnen Komponenten des Systems miteinander interagieren. Die Mission ist für 2025 geplant. Um für die Quantenkommunikation ein lückenloses Netz aufzubauen, werden allerdings hunderte oder sogar tausende Satelliten benötigt.
Hybrides Netzwerk zur Verschlüsselung
Nicht alle Informationen sollen zukünftig über diesen Weg übertragen werden, da das Verfahren sehr aufwendig und teuer ist. Vorstellbar ist ein hybrides Netzwerk, in dem Daten entweder mathematisch oder physikalisch verschlüsselt werden. Antonia Wachter-Zeh, TUM-Professorin für Codierung und Kryptographie, arbeitet daran, mathematisch so komplexe Algorithmen zu entwickeln, dass diese auch von einem Quantencomputer nicht gelöst werden können.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel IT-Medien GmbH, Max-Josef-Metzger-Straße 21, 86157 Augsburg, einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von Newslettern und Werbung nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung.
Bei den meisten Informationen wird es auch zukünftig ausreichen, die Informationen mithilfe mathematischer Algorithmen zu verschlüsseln. Nur für besonders schützenswerte Dokumenten, die beispielsweise zwischen zwei Banken ausgetauscht werden, kommt zukünftig die Quantenkryptographie infrage.
Originalpublikation
Najme Ahmadi, Sven Schwertfeger, Philipp Werner, Lukas Wiese, Joseph Lester, Elisa Da Ros, Josefine Krause, Sebastian Ritter, Mostafa Abasifard, Chanaprom Cholsuk, Ria G. Krämer, Simone Atzeni, Mustafa Gündoğan, Subash Sachidananda, Daniel Pardo, Stefan Nolte, Alexander Lohrmann, Alexander Ling, Julian Bartholomäus, Giacomo Corrielli, Markus Krutzik, Tobias Vogl. "QUICK3 - Design of a Satellite-Based Quantum Light Source for Quantum Communication and Extended Physical Theory Tests in Space“. Adv. Quantum Technol. (2024).